Bayesian hierarchical multivariate formulation with factor analysis for nested ordinal data.

نویسندگان

  • Terrance D Savitsky
  • Daniel F McCaffrey
چکیده

This article devises a Bayesian multivariate formulation for analysis of ordinal data that records teacher classroom performance along multiple dimensions to assess aspects characterizing good instruction. Study designs for scoring teachers seek to measure instructional performance over multiple classroom measurement event sessions at varied occasions using disjoint intervals within each session and employment of multiple ratings on intervals scored by different raters; a design which instantiates a nesting structure with each level contributing a source of variation in recorded scores. We generally possess little a priori knowledge of the existence or form of a sparse generating structure for the multivariate dimensions at any level in the nesting that would permit collapsing over dimensions as is done under univariate modeling. Our approach composes a Bayesian data augmentation scheme that introduces a latent continuous multivariate response linked to the observed ordinal scores with the latent response mean constructed as an additive multivariate decomposition of nested level means that permits the extraction of de-noised continuous teacher-level scores and the associated correlation matrix. A semi-parametric extension facilitates inference for teacher-level dependence among the dimensions of classroom performance under multi-modality induced by sub-groupings of rater perspectives. We next replace an inverse Wishart prior specified for the teacher covariance matrix over dimensions of instruction with a factor analytic structure to allow the simultaneous assessment of an underlying sparse generating structure. Our formulation for Bayesian factor analysis employs parameter expansion with an accompanying post-processing sign re-labeling step of factor loadings that together reduce posterior correlations among sampled parameters to improve parameter mixing in our Markov chain Monte Carlo (MCMC) scheme. We evaluate the performance of our formulation on simulated data and make an application for the assessment of the teacher covariance structure with a dataset derived from a study of middle and high school algebra teachers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد روش بیزی در بررسی روایی سازه های موازنه تصمیم گیری و خود کارآمدی مدل فرانظریه ای در ارتقا رفتار افراد پیش دیابتی شهر یزد

Introduction: To introduce Bayesian method in validation of transtheoretical model’s Self-Efficacy and Decisional Balance for nutritional behavior improvement among Prediabetes with ordinal data. Methods: This is an Experimental trial with parallel design and sample was included 220 Prediabetes who Participated in screening program and had over 30 years old, fasting blood glucose range...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Bayesian Factor Analysis for Mixed Ordinal and Continuous Responses

Many situations exist in which a latent construct has both ordinal and continuous indicators. This presents a problem for the applied researcher because standard measurement models are not designed to accommodate mixed ordinal and continuous data. I address this problem by formulating a measurement model that is appropriate for such mixed multivariate responses. This model unifies standard norm...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Psychometrika

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 2014